Bayesian Ultrasound Image Analysis on Graphics Hardware

نویسنده

  • Qi Wei
چکیده

In this thesis, we investigate using the new generation of programmable Graphics Processing Units (GPUs) which support floating point computations for statistical restoration of ultrasound images. Deconvolution is a widely used method of recovering an image from degradation caused by blurring, and thus increasing the image quality. We present a modified Bayesian 2D deconvolution method which provides better parameter estimation and improves the speed performance over the previous approach. This method lies within the Joint Maximum A Posteriori (JMAP) framework and involves three steps. First is the Point Spread Function (PSF) estimation, which uses the Homomorphic method; second, reflectance field estimation uses a Conjugate Gradient (CG) optimization algorithm; and third , variance field estimation uses a Markov Chain Monte Carlo (MCMC) sampling algorithm. We implement the 2D method entirely on programmable floating-point graphics hardware, and results are achieved at an interactive rate. In order to avoid readback from GPU to CPU, we adopt a multi-pass rendering method to realize the iterative model. This indicates the possibility of using the GPU as a coprocessor in the ultrasound imaging system, to improve image quality in real time. Due to the special architecture of GPUs, not all models are suitable for mapping onto them. We also discuss which structures and schemes GPUs favor and which they do not. Experimental results are presented on synthetic and real ultrasound images acquired by a typical diagnostic ultrasound machine. We believe our research opens the door for many other image processing methods that are otherwise currently impractical, due to time consuming and complicated computations. This is especially important for medical image processing applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Ultrasound Image Analysis on Graphics

In this thesis, we investigate using the new generation of programmable Graphics Processing Units (GPUs) which support floating point computations for statistical restoration of ultrasound images. Deconvolution is a widely used method of recovering an image from degradation caused by blurring, and thus increasing the image quality. We present a modified Bayesian 2D deconvolution method which pr...

متن کامل

Ultrasound Image Restoration on GPUs

Due to inherent complications with ultrasound imaging, B-mode ultrasound images always suffer from speckle and noise, which greatly restricts their clinical utility. Even though many image restoration algorithms have been investigated, they can be expensive and require large memory bandwidth. We investigate algorithms for real-time ultrasound image restoration which can exploit features of mode...

متن کامل

Improving the quality of ultrasound images using Bayesian estimators

Medical ultrasound imaging due to close behavior of cancer tumors to body tissues has a low contrast. This problem with synthetic aperture imaging method has been addressed. Although the synthetic aperture imaging technique solved the low-contrast problem of ultrasound images, to an acceptable limit, but the performance of these methods is not even acceptable when the signal to noise ratio (SNR...

متن کامل

Investigating the Effects of Hardware Parameters on Power Consumptions in SPMV Algorithms on Graphics Processing Units (GPUs)

Although Sparse matrix-vector multiplication (SPMVs) algorithms are simple, they include important parts of Linear Algebra algorithms in Mathematics and Physics areas. As these algorithms can be run in parallel, Graphics Processing Units (GPUs) has been considered as one of the best candidates to run these algorithms. In the recent years, power consumption has been considered as one of the metr...

متن کامل

Physical-Space Refraction-Corrected Transmission Ultrasound Computed Tomography Made Computationally Practical

Transmission Ultrasound Computed Tomography (CT) is strongly affected by the acoustic refraction properties of the imaged tissue, and proper modeling and correction of these effects is crucial to achieving high-quality image reconstructions. A method that can account for these refractive effects solves the governing Eikonal equation within an iterative reconstruction framework, using a wave-fro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003